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Summary. 

As a first step in the development of a nonfinear theory for calculating the response of an axisymmetric system 
to an irregular sea, the radiation problem for axisymmetric floating or immersed bodies in a periodic heave 
motion, composed of a number of harmonic components, is considered by means of a third-order potential 
theory. 

It is shown that the knowledge of only first- and second-order potential functions is required for the 
calculation of all forces up to the third order. A boundary integral equation method is proposed for the 
determination of these potential functions. 

I. Introduction 

A linear approach to hydrodynamic problems concerning the behaviour of a floating or 
submerged body in an irregular seaway can result in realistic prediction if motion and 
wave amplitudes are small. If  they are not, for instance when wave-power absorption by 
floating bodies is considered, nonlinearities have to be taken into account, especially 
when the hull of the body is not vertical near the waterline, so that nonlinear hydrostatic 
forces are induced. 

The development of a second-order theory seemed to be insufficient, because in the 
special case of a harmonic motion second-order forces do not influence the first harmonic 
of the force, thus the power absorption. Moreover, the wave-energy project of the Office 
of Naval  Architecture (State University Ghent, Belgium), in which the author is involved, 
considers the case of an axisymmetric body with a conical shape near the waterline, which 
implies that restoring forces contain a cubic term (Ferdinande [2], [3]; Ferdinande and 
Vantorre [5]). 

A first step in the development of a nonlinear theory for calculating the response of an 
axisymmetric system to irregular waves is presented in this paper. A third-order potential 
theory has been developed for calculating forces acting on axisymmetric floating or 
immersed bodies in periodic heave motion, composed of a number of harmonic compo- 
nents. The nonlinear Bernoulli equation is used and boundary conditions are fulfilled on 
the instantaneous body and free water surfaces. The vertical force is calculated by 
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integration of the pressure over the instantaneous body-surface position, and can be 
written as the sum of a number of first-, second- and third-order terms. The linear terms 
can be expressed in a similar way as the motion; the second- and third-order forces are 
composed of harmonic components of which the frequencies are sums and differences of 
combinations of two, respectively three, frequencies of the motion harmonics. 

A reduction of the order of the problem has been obtained by extending a method 
developed by S~Sding [7]. The knowledge of first- and second-order potential functions is 
sufficient to calculate all forces up to the third order. For the calculation of these 
potentials, a boundary integral equation method developed by Kritis [6] (see also 
Ferdinande and Kritis [4]), based on Yeung's work [10] (see also Bai and Yeung [1]), has 
been extended. 

A more detailed description of this theory is available in Dutch (Vantorre [8]). The 
radiation problem for an axisymmetric body in forced harmonic heave motion of a single 
frequency was considered by Vantorre [9]. 

2. Boundary conditions 

The floating or submerged axisymmetric body is assumed to undergo a periodic heave 
motion, expressed as 

N 

f ( t )  = • Re(~j e i~/) (1) 
j = l  

where gj is the complex amplitude of motion for frequency oaj. Two polar coordinate 
systems are used (see Figure 1): a fixed system (x, z, 0), and a system (~, $, ~) fixed to 
the body, so 

x = ~, (2) 

z = $ + ~, (3) 

O = O. (4) 

A local coordinate system (s, n) can be considered in each point of the body; the angle 
between the s-axis and the z-axis is indicated by a. l is the contour length, measured 
along the intersection of the body with the 0xz-plane. Differentiation with respect to 1 is 
denoted by a prime ('). The wave elevation in a point of the free surface is denoted by Z. 
If the motion of the fluid is assumed to be irrotational, a velocity-potential function 
can be defined: 

v = ( 5 )  

with v denoting the velocity of the fluid particles. Laplace's equation has to be satisfied, 

~xx + 1 ~  + ~z~ = 0, (6) 
X x 
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Figure 1. 

together with the following boundary conditions: 
(i) On the free surface, SF, the pressure p does not change with time and is equal to the 
atmospheric pressure P0- Using Bernoulli's equation, and expanding the potential func- 
tion in a Taylor series in order to obtain an expression on the mean position SF of the 
free surface, this condition can be written as 

2 dpz2 ~bzz d~. + g ~  + 2~:,ggxt + 2d~z~z, -- ~=~t--  d~,~ztt + d~x ~xx + 2d&~zd~xz + 

2g(~X z+  ~ 1  ~ t 2 ~ . - ~ ( ~  ~ +  
2g 2 

1 ~,~t,~z,~z,,= ° - ~ '~,'~x,'~= - ~ '~z'~,'~z~, - -~,~,,~J~= + on SF(z = 0); 

(7) 

(ii) Normal velocities of fluid particles and body have to be equal at the wetted body 
surface Sb: 

-~ sin a = 4 .  on Sb, (8) 

= 4 .  - ~'q~.. sin a + ~'~.~ cos a 

1 2 + ~ ~n. .  sinZa -- ~2~..s cos a sin a 

+ ½~2~.s s cos2a on Sb; (9) 
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(iii) On the bottom and on other fixed axisymmetric bodies in the fluid, the normal 
velocity component equals zero: 

(I). = 0 on Ss; (10) 

(iv) Radiation conditions will be developed in the sequel. 
Note: In expressions (7) and (9) terms of fourth or higher order have been neglected. 

3. Splitting the potential function 

The potential function is now written as the sum of first-, second- and third-order terms, 

• =1~  +2¢  +3¢.  (11) 

If (11) is substituted into (6), (7), (9) and (10), and first-, second- and third-order terms 
are grouped, conditions for ~ ,  2¢ and 3~ can be found. 

The set of boundary conditions for the first-order potential function 1(1) reveals an 
expression for 1(1): 

where 

N N 

1 ¢ =  E Re[, +('°j) el+t] = E Re[~j,~ ('~/) e*'/] (12) 
j = l  j = l  

1 ~<~j )  ~- g j l ~  (°J/). ( 1 3 )  

Nonhomogeneous terms of the boundary conditions of 2~ are composed of products of 
two first-order terms (~, 1(I)). It can be shown that 2¢ has to take the following form: 

2 ¢ =  

N N 

E E 
k = - N j = l k  I 

k ¢ O  

R e [ 2 ~ ( , ~ j + + o  ei(O~j+~,) t ] 

N N 

= 2 E  E 
k = - N j = l k  I 

k-~O 

Re[ Ajk~/~=k2~ (~++=~) e i(̀ °+++'*)t ] 

where 

:+<:++:,) = 

Ajk=½ if I J l - l k l ,  

= 1  if I J l : ~ [ k [ ,  

0J _ j  ---~ - -  tO j ,  

~_j = ~/* (complex conjugate value). 

(14) 

(15) 

(16) 

(17) 

(18) 
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Nonhomogeneous terms of the boundary conditions of 3(I ) a r e  composed of (a) products 
of three first-order terms (~, 10), and (b) products of a first-order term (~, 10) with a 
second-order term (zO), which leads to the following expression for 30: 

N N j 

 o=EE E 
j = l  k=j l = - N  

1:~0 

[3"~<wj+wk+wt) ei(O~j+~,+~,)t] 

N N J 

j = l  k=j I = - N  
l ~ 0  

[ ~ ~ ~ ~ - - ( w  +wk+w D ei(wj+wk+o~t)t] 
l~jkl~jSk~[3 ~) / (19) 

where 

3- ~ (,0, + o,, + ,o,) = 6 Bjk,~ fi~ ~- t 3~(wj + w k + wl) ' (20) 

Bjkl = ~ if j = k = l ,  

1 if j = k ~ l  or j = l ~ k  or j:~k=l, = 7  

= 1  if j4:k--/=lq=j. (21) 

Expressions for the boundary conditions on S b, S e and Ss,  as well as a radiation 
condition, can now be obtained for each complex potential function m~ <~), m = 1, 2, 3 
(see Appendix A). 

4. Force calculation 

The vertical force on the body can be calculated by integration of the pressure p - P0 over 
the wetted body surface, 

F =  f f s h ( P - P ° )  sin a d S =  2~r f ~ h ( p - p o ) x  dx ,  (22) 

S b being the intersection of S b with the 0xz-plane. In order to obtain an expression for the 
pressure in which values of the potential function on the mean position of the wetted 
body surface only occur, Bernoulli's equation is expanded in a Taylor series, 

1 2 
P - P o  = - - p ( g . 7  + g~ + Ot + 1 0 2  + ~ 0  s -- ~Ont sin a 

1 2 +~Ost cos a + 7~" gP..t sin2a - -  ~20nst COS a sin a + l f f2(I)  2 sst c os2° (  

--~¢nO.n sin a + ~On¢~s cos a - ~'OsO.s sin a + ~OsOss cos a) .  (23) 

As S b represents the instantaneous wetted body surface, the pressure has to be integrated 
over the region on Sb between the instantaneous and the mean free-surface positions as 
well. For the calculation of this part of F, the horizontal coordinate x in (22) is developed 
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into a Taylor series in terms of ~ about the point (~ = 0) of Sb. Several partial integrations 
lead to an expression in which powers of ( Z -  ~) occur; the latter can be evaluated by 
calculating the value of ~ for which the series expansion of (23) about ($ = 0) equals zero. 
If (11) is used, the following expression for F is found: 

F =  - 21rp f~h( g~ + g~ + l ~t ) x d x (lst  order) 

f 1 2 - 2 ~ r p -  [20, + ~(l~.  +a~s 2) - f l ~ . ,  sin a + fl~.t cos a ] x  d x  
s h 

[ (1 1 l + ~rpg tan a r ~ + - l O t _  _ (2nd order) 
g ] J(~=0) 

q'/'i 0 f [3 I~, +1 (I)n 21I)n "t-1 (I)s 21I)s - -  ~2(I)n, sin a + ~2q5,, cos a 2 

+ ½~21~,, , sinZa - ~21~,s t cos a sin a 

+ l~21(~ss t C O S 2 a  - -  ~ l ~ n l f ~ n n  sin a 

+~1¢.1¢. ,  cos a - ~1~,1¢., sin a + ~l¢,lCs, cos a ] x  d x  

[ ( 1 )3(glgPt t x " - z " t a n a  ] 2~rp a r ( 1 ) 
+ - ½~rpg ~ + tan2a + -----COS20/ ] + tan + g a ~  t 

X 2~)t "Jr" ~( l ( I )n  -[-1 (1)s 2 ) -- ~l~)nt sin a + ~1~,, cos a 

1 }] 
2 cos a (~=0) 

(24) 

where r denotes the radius of the mean waterplane. If use of (1), (12), (14) and (19) is 
made, it can be shown that the vertical force F can be written as 

F = I F + 2 F + 3 F  (25) 

with 

1F = p g V  o ~_. Re i f  ('°A e/'°/ , 
j = l  

(26) 
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2 F =  2pgVo E ~_, Ajk Re 2f  (~'+'~k> ~k ei(,~,+~,~), , (27) 
k = _ N  j = l k  ] ro 

k4:0 

N N j [ -(oa + +o~) ~j ~'k ~'1 ] 
3F = 6pgV°j=IE k=j y" ,:ENBJk'-- Re'[3s ¢ ' =~ ' --ro ro ro ei("++~+=')' , 

l+~0 

(28) 

where V 0 and r 0 are a characteristic volume and length, respectively. General expressions 
for the nondimensional complex force components , , f ( ~ )  are given in Appendix B; 
normal derivatives of potential functions are eliminated making use of Laplace's equation 
and the boundary conditions on the body. 

5. Reduction of order 

It seems that the expression for 2/(%+~k) contains only one term which requires the 
knowledge of a second-order potential function; this term can be denoted as 

2~rr02 _ r 2 
gVo i~oj, f_.~h2q)(:Jk)X dx - °--2-gvolJk. (29) 

where 

~jk = ~j + '~k- (30) 

A similar notation can be used for the only term in the expression for 3f (",+'~k+~'> 
containing a third-order potential function: 

2~rr°3 ' f 3~('v*')x r g t  (31) '~'*'4h d x -  gVo.+k ̀ 

where 

~jkt = ~j + °~k + %. (32) 

Expressions for Ijk and I jk  I can now be found which only contain first-order potentials 
and first- and second-order potentials, respectively, by means of an order-reduction 
method, described by S/Sding [7] for the calculation of second-order forces on a two-di- 
mensional body in a harmonic oscillatory motion. For this purpose, (29) and (31) are 
written as 

/" f Y.(+,,) ~.(-,k) Ijk = j jElV, 2v dS, 

Ijk+ f [ 2(,~j,,) E.(~,+k,) = j j , g j . e .  3.e dS, 

(33) 

(34) 



224 

where 1~ ('°Jk) and a~ (''jk') denote the linear potential functions for the harmonic motion 
with frequency ~o2_+ % and ~0j + o: k + ~ot, respectively. Taking into account the boundary 
conditions on SF, SB and SR, application of Green's theorem to the functions 
(1~ (~jO, 2~ (~j*)) and (1~ (~'j*'), 3~('5~')), respectively, in a region with boundary ST = SF + Sb 
+ Ss + SR, leads to following expressions for Ijk and Ijkl: 

r 6,3 2 ] 

*jkl-- JJ~bl"l" 3"t'n a s _  jJ~F1, t. [ g 3"e --3"Z: j dS. (36) 

Making use of the boundary conditions for 2~ (~j~) and 3~ (°>j~') on fib and SF, these 
potential functions disappear in expressions (35) and (36), and are replaced by potential 
functions of lower order. Normal derivatives of potential functions can be eliminated 
using Laplace's equation and the boundary conditions. 

6. Numerical procedure 

It appears that calculation of 2/(~jk) requires the knowledge of the first-order potential 
functions 1~ (°'A, 1~ (t°k) and 1~ (~jk), while the expression for 3f (~',~') contains the linear 
potentials 1~ (~'j), ~(~*), 1~ (°,,), l~(~'J k,) and the second-order potentials 2~ (`~jO, 2~('~J ,), 
2~ (wkl). 
A boundary integration equation method proposed by Yeung [10] (see also Bai and 
Yeung [1]) and implemented by Kritis [6] (see also Ferdinande and Kritis [4]) for 
axisymmetric shapes, has been used for the calculation of the linear potential functions, 
and has been extended in order to obtain the second-order potentials. This method is 
based on the application of Green's theorem to the functions 1/4 and ~ - m ~  (~w~ 
(m = 1, 2; E~ = Ejma~j), ¢ being the distance between a reference point P and a variable 
point Q, both situated on the boundary ST: 

< , tc)]ds (37) 

where ~k is the space angle, equal to 2~r if ST is planar near P, and n denotes the unit 
normal vector, external with respect to the fluid. Sr is now divided into N 4 discrete 
axisymmetric elements (see Fig. 2). Boundary integral equation (37) is written N 4 times, 
considering each discretization point T~ as reference point. If the potential function ~ is 
assumed to be constant for each element, one obtains a linear system of N 4 equations with 
N 4 variables: 

2'17"~i + E ~pjaij + E aij 
j= l  j=N,+I 

+ ~g Qu + ~ +ik(yo,)Pu + E q>JQu=Bi 
j=N2+I j=N3+I 

(38) 
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Figure 2. 

where 

N, 
Bi=ioaEPijsinaj, if ~ = 1 ~  {'°~, 

j = l  

N~ [ 1 - 
= + + - -  sin a ( l , ( '~0 '  + 1~('°,)' ) E Pij sin 0/j 1~ (~°k)'' 1~ (°at)" 

j = l  X 

(1 si.ocos - i % t  x 

i N2 [.., 2.(~*) 2(~') 10}kO)lO)kl({~2 + {OkO~l "t- £0 2)ld~(°~k)l{~ (*°t) 
2g  ~ fij[""kll'~x l'ex + 2  g 

j=N1 +l 

+ 2~k l~  k l't'xx + X l't"x 

+ : ~ n v  U,~xx + 1~ ~) 

(39a) 

if ~=2~ ('°~0, (39b) 
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cj=f< 1, dS, (40) 

Q,,= f Ss--~(~ ) dS. (41) 

Expressions for Pij and Oij are given by Kritis [6], and Ferdinande and Kritis [4]. It is 
obvious that the systems for calculating l~ (°'k') and 2~ ('°*') have the same matrix; 
computing time can be saved if this equality is taken into account. 

Numerical calculation of complex force components ,~f(~,0) for all combinations of 
frequencies within the interesting range requires a large amount of computer time. In a 
more realistic approach, values of 2f (~+~*) and 3f (~j+°'*+~') are calculated for a limited 
number of particular combinations of frequencies. 2f  and 3f can be considered as 
functions of two, respectively three, frequency variables; continuity and symmetry prop- 
erties make it possible to obtain values for other combinations by interpolation. 

The following particular combinations are considered: 

O) k : 

~O / 

f o r  2/(~j+wk) 

t.O k ~ t.d --£0 0 

f o r  3 i  (%+~k+°~t) 

~ ~ - ~  0 

o~ - ~  0 0 0 

Numerical calculation of these complex force components requires the knowledge of the 
following potential functions: 

l~(C°) ; 1~(2¢°) ; 1~(3~°); 

2~(~°- ~°) ; 2~(w+0) ; 2~(c°+w)" 

Only four different system matrices are needed for the calculation of these potential 
functions; moreover, the system matrix for 2~ ('°-'°) is independent of frequency. 

7. Conclusion 

It has already been suggested (Ferdinande and Vantorre [5]) that the presented radiation 
theory can be extended to a method leading to the determination of the nonlinear heave 
response of an axisymmetric system to an irregular sea making use of the "relative motion 
hypothesis", if the horizontal dimensions of the body are small compared with wave 
length (long-wave approximation). As this theory concerns a frequency domain approach, 
transient problems cannot be dealt with, but if only the steady-state response is im- 
portant, for example when energy absorption from a seaway with a given wave spectrum 
is considered, application of time-domain methods, which might be more powerful but 
require large amounts of CPU-time, is avoided. It appears that the presented method does 
not consume more computer time than required for the solution of the third-order 
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radiation problem for an axisymmetric body in a forced harmonic motion (Vantorre [9]), 
thanks to the interpolation procedure for determining second- and third-order force 
components for all frequency combinations starting from the values for a limited number 
of particular cases. 

Acknowledgements 

The author is indebted to the Belgian National Fund for Scientific Research for funding 
these studies, and expresses his thanks to prof. ir. V. Ferdinande (Office of Naval 
Architecture, State University Ghent, Belgium) for his supervision and support. 

Appendix A. Boundary conditions 

(i) Laplace's equation 

g(=o,) + 1 g(~.~,) + g(=o,)= n 
mTXX X m'rx  m r z z  ~ ,  

(A.1) 

(ii) Free surface conditions (SF) 

with 

-- (021~(~°') -{'- gl ~ %) = O, (A.2) 

_ ~02k 2~(~,,) ~_. Y.('~,O - ! ; / ( ' )  (A.3) - -  ,52"Fz - -  2 x / ' j k  , 

__~02 ~(%k,)+ .y . ( . , , , , )= l i ( . ) (1)a_ . ) (1)  a_,~(1)]  1 [ ,)(2)_.}_2(2 ) .~_,)(2)] (A.4) 
' j k l3  63"¢'z / ' j , k l - - / ' k , j l - - / ' l , j k ]  -b T 4 ~ F j , k l  f k , j l  / - I , j k ]  

'~jk = o~j + ~k, ( A S )  

~jk~ = % + ~ + o~t, (A.6) 

[ 7.(%) E..(,~k) ~ 7.("A E..(,.,O ! ( . .  E.(%) E.(~k) .., ~.('~k) E.(%)~ 

1 
- - 7.(,.,,) 2(%)'1 (A.7) 

2 g 

~ ( a )  . . . . .  [ 7.(,~A X(,ok,) y.(o,,) y.(,~,)] ~ 1 . .  7.(,~,) 2(,~,) . ,  Y.(,~0 y.(,o~,)~ 
, k l  - -  ~ jk l~ , l "Px  2"f'x -'}'-1 "t"z 2"t"z ] Jr- ~2 ~ °'ajl"P 2"t'zz -{- ~ k l l ' e ' z z  2"i" ] 

21 LOjl'Oktg ~[ ¢0[/1 ~(W,)z 2 ~(~k,) -}- "Vkll'P"" X(wJ) 2~'zX(°'~')), (a .8)  
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¢;(2) o 2('°A 2('°,) ~.(,o~) "~ 2(~j)[ 2(~,) 2(~)  2(~)  2(,.'k)'~ 
f j , k l  ~ - -  ~ l ~ x x  l~t"x lhUx - -  ~"lhUx kl~"z 1Y"xz + 1 Y z  lhUxz ] 

+ 1 zz \ l ' t ' x  l '~x 1 ~ z  l'f'z ] 

g 1 z I,l"~x l"Px - - l ' f ' z  l"Pz ] + g a r z z z  l"l" l"t" 

- 2 °~1'¢°~ [ 2(toA t 2(to,) 2(,o,) - 2(,~) 2(~,,) ~ 2(,~A [ 2(,°,) 2(to,) a ~(to~)a~(,~,) ) 
g [ l"f'x k lh  u lhUxz - -  1 ~"xz lh u ] + 1 "t'xz \ l h  u l"Px + 

2..,,_,_ 2 , o .  + 2 o., 2,°, ,  
1 ~dZ ~l"t ~ l'~dZZ - -  1 "Pzz 1"1" I~zZ  1,1"1' I'PZ 

¢a)2 0~ k O) l " to to 
g--2 t12(l~!"zz j) 2(lV k) 2(to,')lV -[- 1Vz2( toJ ) [X( tok )2 (~ t ) -~ - l~ tok ) l~ ( to t ) ) ]k l~"  l~l"z . (A.9)  

(iii) Body surface conditions (Sb) 

with  

1~ (tog) = --io)j sin a, 

2(wjk, = ¼(~(1)+ ~(1)), 2"t"n 

3"Fn2(~°Jk" = 6 k ° ' J  k l  [ .p~(1, ..~ °'kl'P~(l' .~_ ~1) ) __ ~4 ( ~(2, ..~_ ik(2) ..~ i(2, ) 

~.(a) = ~(,~j) sin "~ - X(to) r n n  ~ l'q'ns COS 0~ 

~k o) _ y.(,o~,) sin a - y.(,o~,) cos a ,  l - - 2 Y n n  2 ~ n s  

~(2) =1  ff)(toj)rnnn s i n 2 a -  ~'lWnnsO 2(0,) sin a cos a + a ~,(toAT.~, COS 2a. 

(A.10)  

(A.11)  

(A.12)  

(A.13)  

(A.14)  

(A.15)  

(it)) Conditions on bottom and other fixed surfaces (SB) 

g(x~)= 0 mrn m = 1 , 2 , 3 ;  ~.~o= ~oj . (A.16)  

(v) Radiation conditions (SR) 

(1 ) 
mg,_~ x'~) + ~-~  + ik(xo, ) , ~ )  = 0 

m = 1, 2, 3; ~ o  = ~oj 

(A.17)  



with 

k(~,~) tanh k(~,o)h = - -  
g 
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(A.18) 

Appendix B. Nondimensional complex force components 

(i) First-order forces  

_ Sr  o 2rrr o io~j f _ 
l f (~J ) ll:/}(~°J) X dx ,  

Vo Vo g J~ b 

where S denotes the waterplane area at rest. 

(iO Second-order  forces  

(B.1) 

2 f  (%+'~*)-  gVo t,]g [216djk2q~(~°J*)+-121dP(°~')'~ b(~k, ÷½icoso/(O~jl~(~ ' ) '÷O~kl~(~k) '  ) 
b 

-~ s i n 2 a ( 4  + ~°J~°k + co~)]x dx  - ½g[r  tan a 5jS,](z=o)} 

(B.2) 

where 

i~o- _ 
• ~j = 1 + --v lq~(%) ' g (B.3) 

(B.4) 

(iii) Third-order forces  

3f(¢j+o~,+~) = 7fro 3 

gVo 

f z f [ 2.(~)' 2.(ore)' + 2.(~o' ~.(~j,)' _~ 2.(~,)' 2 . (~) '  X ~2i%k t gb3~(%k/)X dx  + 3 j~htl v 2"e 1-r 2,t," -1-i- 2"/,' 

+ i  cos ~ ( ~ , , 2 ~ , ~ , , '  + ~,,2~o,,,' + ~,,2~,~,~,')] x d x  
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+ ~ f~ ((loj + lok, sinZa),~('~#' + (oa k + ~oj, sin2a),~ ('~*)'' 
b 

+ (% + ¢ojk sin2a),~(~')")x dx 

+ ~i~jktf~ (l~('V)' + 1 ~('~)' + 1 ~('~')') sin3a dx 

i f~ + ~jllq~ ('~) + Oajklq~ ('~'))XX" sin a dx + ~ ( , ~ , ~ , ~ ( ° ' "  - , _ , 

b 

-'[-l~(~°t)'(l(~'°~J'"-[ - I~ 'W*)")]  COS X d x  

1 2 f~ (COS sin a + Xz") sin2a dx + ~oaj~ l _ u 
b 

~ ( , , , j  + ,4  + ,4  c o s .  s i n .  zx" ax 
gb 

[_~ ( x " - z " t a n a )  
+ g tan2a + r Z-jSk5 t 

CO S 2O/ 

-½r  tan a i(o~kfij2~ ('~*') + Oajfik 2~ ('°'') + ~0j,$,2~ ('~'*)) 

~ r  tan a{-- (~02 + o~jo~ k + ~2)~j-- (~0} + oajo~, + 0~2)5k 

- ( 4  + ,~0,, + .g )~, + ~.~(°*",~,(~'" 

- -  t - -  t - -  v - -  p 

Jr-Skl~(eJ ) 1~ (a~`) q- ff.li~(wJ ) 10 (t~k) 

+ i  c o ~ .  [,~ja~(°,)'(~, + ~,) + . , , ,7/~,)'(zj + ~ , )  

where 

(B.5) 

(B.6) 
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